Double-base palindromes: Problem 36
The decimal number, 585 = 10010010012 (binary), is palindromic in both bases.
Find the sum of all numbers, less than one million, which are palindromic in base 10 and base 2.
Find the sum of all numbers, less than one million, which are palindromic in base 10 and base 2.
(Please note that the palindromic number, in either base, may not include leading zeros.)
Problem Source : Euler Project
Python Code
def doubleBasePalindromes():
def reverse(text):
if len(text) <= 1:
return text
return reverse(text[1:]) + text[0]
def toBinary(numb):
S = ""
while numb > 0:
rem = numb%2
S = S+str(rem)
numb = numb/2
if S == reverse(S):
return True
else:
return False
i = 1
totalSum = 0
while i <= 1000000:
if str(i) == reverse(str(i)):
if toBinary(i) == True:
totalSum = totalSum + i
i = i+1
print "Required Sum:",totalSum
doubleBasePalindromes()
def reverse(text):
if len(text) <= 1:
return text
return reverse(text[1:]) + text[0]
def toBinary(numb):
S = ""
while numb > 0:
rem = numb%2
S = S+str(rem)
numb = numb/2
if S == reverse(S):
return True
else:
return False
i = 1
totalSum = 0
while i <= 1000000:
if str(i) == reverse(str(i)):
if toBinary(i) == True:
totalSum = totalSum + i
i = i+1
print "Required Sum:",totalSum
doubleBasePalindromes()
No comments:
Post a Comment