In the 20×20 grid below, four numbers along a diagonal line have been marked in red.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
The product of these numbers is 26 × 63 × 78 × 14 = 1788696.
What is the greatest product of four adjacent numbers in the same
direction (up, down, left, right, or diagonally) in the 20×20 grid?
Largest product in a grid : Problem 11 Source:
Euler Project
I have saved the matrix in a file "11.txt"
C Code:
#include<stdio.h>
#include<malloc.h>
int main()
{
int **matrix,row,col,maxProduct=1;
int i,j;
int s1,s2,s3,s4,s5,s6,s7,s8;
FILE *fp;
matrix = (int **)malloc(20*sizeof(int*));
for(i=0;i<20;i++)
matrix[i]=(int *)malloc(20*sizeof(int));
fp = fopen("11.txt","r");
while(!feof(fp)) {
for(row=0;row<20;row++) {
for(col=0;col<20;col++) {
fscanf(fp,"%d",&matrix[row][col]);
}
}
}
for(i=0;i<20;i++) {
s1=s2=s3=s4=s5=s6=s7=s8=1;
for(j=0;j<20;j++) {
// left-sum
if(j-3 < 0)
s1 = 1;
else
s1 = matrix[i][j]*matrix[i][j-1]*matrix[i][j-2]*matrix[i][j-3];
if (maxProduct < s1)
maxProduct =s1;
// right-sum
if(j+3 >= 20)
s2 = 1;
else
s2 = matrix[i][j]*matrix[i][j+1]*matrix[i][j+2]*matrix[i][j+3];
if (maxProduct < s2)
maxProduct =s2;
// up-sum
if(i-3 <0)
s3 = 1;
else
s3 = matrix[i][j]*matrix[i-1][j]*matrix[i-2][j]*matrix[i-3][j];
if (maxProduct < s3)
maxProduct =s3;
// down-sum
if(i+3 >= 20)
s4 = 1;
else
s4 = matrix[i][j]*matrix[i+1][j]*matrix[i+2][j]*matrix[i+3][j];
if (maxProduct < s4)
maxProduct =s4;
// diag-up-left
if(j-3 < 0 || i - 3 < 0)
s5 = 1;
else
s5 = matrix[i][j]*matrix[i-1][j-1]*matrix[i-2][j-2]*matrix[i-3][j-3];
if (maxProduct < s5)
maxProduct =s5;
// diag-up-right
if(i-3 < 0 || j + 3 >= 20)
s6 = 1;
else
s6 = matrix[i][j]*matrix[i-1][j+1]*matrix[i-2][j+2]*matrix[i-3][j+3];
if (maxProduct < s6)
maxProduct =s6;
// diag-down-left
if(i+3 >= 20 || j-3 < 0)
s7 = 1;
else
s7 = matrix[i][j]*matrix[i+1][j-1]*matrix[i+2][j-2]*matrix[i+3][j-3];
if (maxProduct < s7)
maxProduct =s7;
// diag-down-right
if(i+3 >= 20 || j+3 >=20)
s8 = 1;
else
s8 = matrix[i][j]*matrix[i+1][j+1]*matrix[i+2][j+2]*matrix[i+3][j+3];
if (maxProduct < s8)
maxProduct =s8;
}
}
printf("\nLargest Product is %d",maxProduct);
fclose(fp);
return 0;
}