The Programming Project: 2025

Monday, December 15, 2025

Income Tax Calculator 2025 Onwards New Regime

Budget 2025 Income Tax Calculator

Calculate your tax liability under the new tax regime with detailed breakdown

Your total salary before any deductions
Interest, dividends, rental income, etc.

Try with example incomes:

Key Features of Budget 2025

💰

No Tax up to 12 Lakh

Rebate of 60,000 makes income up to 12,00,000 tax-free

📊

New Tax Slabs

Revised tax slabs under new regime for FY 2025-2026

🛡️

Marginal Relief

Protection for those earning just above 12 lakh

💼

Standard Deduction

Increased to 75,000 for salaried individuals

New Tax Slabs (FY 2025-2026)

Income Slab
Tax Rate
Up to 4,00,000
0%
4,00,001 - 8,00,000
5%
8,00,001 - 12,00,000
10%
12,00,001 - 16,00,000
15%
16,00,001 - 20,00,000
20%
20,00,001 - 24,00,000
25%
Above 24,00,000
30%

Note: This calculator provides an indicative estimate based on Budget 2025 proposals. For actual tax filing, please consult a qualified tax advisor. Results may vary based on individual circumstances.

ISC Computer Science Theory Paper 2023 Program Transpose of a Matrix

 





import java.util.*;

public class Matrix {

    public static void main(String[] args) {

        // Create a single Scanner object for System.in
        Scanner scanner = new Scanner(System.in);

        // Pass the single Scanner object to the Trans constructor
        Trans obj = new Trans(scanner);

        obj.fillarray();
        obj.display();

        // Close the Scanner
        scanner.close();
    }
}

class Trans {

    private int m;
    private int[][] arr;
    private int[][] arrT;
    private Scanner in;

    Trans(Scanner scanner) {
        this.in = scanner;
        System.out.println("Enter the order (size) of the square matrix:");
        this.m = in.nextInt();
        this.arr = new int[m][m];
        this.arrT = new int[m][m];
    }

    public void fillarray() {
        System.out.println("\n--- Entering elements for the " + m + "x" + m + " matrix ---");
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < m; j++) {
               
                System.out.println("Input element at [" + i + "][" + j + "]:");
                arr[i][j] = in.nextInt();
            }
        }
    }

    public void display() {
        System.out.println("\nORIGINAL MATRIX:");
        printMatrix(arr);

        transpose();
    }

    private void transpose() {
        System.out.println("\nTRANSPOSE OF THE MATRIX:");
        // The core logic for transpose: ArrT[i][j] = Arr[j][i]
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < m; j++) {
                arrT[i][j] = arr[j][i];
            }
        }
        printMatrix(arrT);
    }

    // Helper method for cleaner printing and better formatting
    private void printMatrix(int[][] matrix) {
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < m; j++) {
                // Use format for aligned columns, which improves readability
                System.out.format("%5d", matrix[i][j]);
            }
            System.out.println();
        }
    }
}

Sunday, December 14, 2025

ISC Computer Science Theory Paper 2023 Program Dudeney Number

 




import java.util.Scanner;

public class Dudeney {

    public static void main(String[] args) {

        NumDude obj = new NumDude();
        obj.input();
        obj.isDude();

    }

}

class NumDude {

    public void isDude() {
        if (numb == (int) Math.pow(sumDigits(numb), 3)) {
            System.out.println(numb + " is a Dudeney Number");
        }else {
            System.out.println(numb + " is not a Dudeney Number");
        }
    }

    private int sumDigits(int x) {
        if (x > 10) {
            return ((x % 10) + sumDigits(x / 10));
        } else {
            return x;
        }

    }

    public void input() {
        Scanner scanner = new Scanner(System.in);
        System.out.print("Enter a positive integer: ");
        numb = scanner.nextInt();
        scanner.close();
    }

    public NumDude() {
        this.numb = 0;
    }
    private int numb;

}

🔢 Dudeney Number Checker

A Dudeney number is a positive integer that is a perfect cube such that the sum of its decimal digits equals the cube root of the number.

🎯 Examples:

  • 1 = 1³ and 1 = 1
  • 512 = 8³ and 5+1+2 = 8
  • 4913 = 17³ and 4+9+1+3 = 17
  • 5832 = 18³ and 5+8+3+2 = 18

Try numbers like: 1, 512, 4913, 5832, 17576, 19683